大佛寺和胡家河4#煤潤濕性對比
來源:用戶上傳
作者:
摘 要:采用室內測定煤的吸—疏水特征實驗、煤粉末浸透速度法實驗及煤-水溶液界面接觸角測定實驗,研究了大佛寺與胡家河井田4#煤體潤濕性特征。實驗結果顯示,煤的吸—疏水特征實驗表現為整體胡家河4#煤樣疏水速率高于大佛寺4#煤樣;煤粉末浸透速度法實驗表現出大佛寺4#煤樣潤濕高度一直處在胡家河之上;接觸角測定結果證明胡家河4#煤樣的接觸角均大于大佛寺4#煤樣。以上實驗結果均表明大佛寺4#煤潤濕性要好于胡家河4#煤。使用表面活性劑水溶液測定煤的接觸角揭示了胡家河4#煤的潤濕性較大佛寺4#煤更容易被改善。該項研究表明煤層氣井壓裂過程亦或是排采作業過程,對大佛寺4#煤儲層進行改造要保證預留足夠長的時間,而胡家河煤層氣的開發要借鑒大佛寺的成功經驗,同時利用自身煤儲層易疏水優勢制定有利的排采制度;向壓裂液中加入適當表面活性劑改良煤體潤濕性,可以解決煤層氣開發過程中出現的壓裂液返排不徹底、前期排水時間過長等問題。
關鍵詞:潤濕性;接觸角;排采制度;煤層氣
中圖分類號:TD 742;P 618.11 文獻標志碼:A
DOI:10.13800/j.cnki.xakjdxxb.2019.0308 文章編號:1672-9315(2019)03-0435-08
Abstract:To study wettability of 4# coal in Dafosi and Hujiahe Coalfield,a series of experiments have been conducted including the characteristics of hydrophilic-hydrophobic,experiment of coal powder penetration velocity and coal-water solution interface contact angle measurement.The results show that the overall hydrophobicity rate of 4# Hujiahe coal sample is higher than that of 4# Dafosi coal sample,the wetting height of 4# Dafosi coal sample is always beyond of 4# Hujiahe coal sample,and the contact angle of 4 # Hujiahe coal sample is larger than that of Dafosi 4 # coal sample.Comparison of experimental results find that wettability of 4# coal in Dafosi Coalfield is better than that in Hujiahe coal mine.Measuring the contact angle of coal with surfactant aqueous solution reveals that the wettability of Hujiahe 4# coal is easier to be improved than that of Dafosi 4# coal.The contact angle measured by using solution to which has been added surface active agent revealed that the wettability of later is easy to be improved compared with the former.The results indicate that during fracturing and producing process,adequately long time should be reserved to improve the 4# coal reservoir to improve the permeability and recovery efficiency of coalbed methane in Dafosi Coalfield.The development of coalbed methane in Hujiahe Coal Mine needs to draw on the successful experience from Dafosi CBM development and should take advantage of easy hydrophobic characteristic to formulate favorable production law.By adding appropriate surface active agent,the fracturing fluid can improve the wettability of coal,which can overcome the difficulties fracturing fluid flowback is not complete and the drainage time is too long in the early stage of coalbed methane development.
0 引 言
目前學者們對煤層氣吸附、解吸機理有了初步的認識,王博洋、張群、唐書恒、蘇現波、張凱、Busch等認為煤層氣吸附屬于物理吸附范疇[1-6],但是張遂安、馬東民等研究發現解吸過程與吸附過程又不完全可逆[7-9]。伴隨著合理的排采工作制度研究,發現煤層水對甲烷解吸影響較大。煤在變質作用過程中,橋鍵與支鏈中親水基團的變化(實質上是煤的三元結構—煤化學結構變化)與粘土礦物的含量[10-13](灰分產率)影響著煤層中水的流動性,控制著煤層氣井排水降壓的難易程度。事實上,煤的潤濕性決定煤的親水—疏水能力,煤的親水能力強,水—煤基質表面作用力則強,在外界干擾(抽水)下煤層的疏水效應不明顯,難以促使煤基質孔隙表面吸附的甲烷解吸,這將直接降低產氣量??梢?,煤的潤濕性是影響煤層氣井產氣效率和產能的一個關鍵因素。 國內外對煤的潤濕性研究較早,基本應用在礦井除塵領域[14-16],近些年在油氣藏儲層改造方面應用較為廣泛[17-20]。
將煤的潤濕性研究應用到煤層氣開發領域的文獻鮮有報道,筆者通過前人的研究方法對大佛寺和胡家河4#煤潤濕性做一比較,希望借鑒大佛寺井田已有的煤層氣開發經驗,對胡家河井田煤層氣開發提供更好的策略,為整個彬長礦區煤儲層研究和工程開發提供理論依據[21-22]。煤的潤濕特性可通過煤的吸—疏水特征實驗、煤粉末浸透速度法定性分析[23-24]以及煤—水溶液界面接觸角測定方法進行定量研究[25-29]。3種方法各有利弊,可互相印證,以求全面、綜合、準確地反映煤體潤濕性特征。
1 煤的吸、疏水特征實驗
1.1 空氣干燥基吸—疏水實驗
樣品采自彬長礦區胡家河和大佛寺煤礦4#煤層開采工作面,將空氣干燥基無夾矸塊狀煤樣破碎成150 g左右的無明顯裂縫的不規則塊樣(避免制樣過程中煤粉堵塞孔裂隙而造成偏差),稱重之后放入燒杯,蒸餾水浸沒。實驗中每組采用4個樣品,以求減小實驗誤差。參照國家標準GB/T23561.5-2009第5部分:煤和巖石吸水性測定方法,測定煤樣飽和吸水率。將煤樣分別浸入盛有蒸餾水的燒杯中,每隔8 h稱量煤樣質量,直至恒重為止,計算煤樣飽和吸水率。利用2組飽水煤樣進行疏水實驗,分別將煤樣放在透水網上使煤中水分自然疏干,開始時每隔2 min測量一次煤樣質量,待煤樣含水率下降緩慢以后30 min測量一次,再到后來1,4,8 h測量一次,直到含水率保持穩定為止,根據時間—含水率關系繪制煤樣疏水曲線(圖1)。
1.2 干燥基煤樣吸—疏水實驗將2組8塊煤樣分別置于干燥箱內干燥,溫度設置為105 ℃,每隔15 min測定煤樣質量,直到前后質量相差不超過0.1 g為止。將干燥煤樣按上述步驟,分別測定吸水過程和疏水過程的含水率,做含水率隨時間的變化曲線圖(圖2)。
1.3 實驗結果空氣干燥基煤樣的吸水實驗表明,胡家河4煤飽和吸水率為2%,大佛寺4#煤飽和吸水率為1.24%;疏水實驗中,胡家河4#煤(開始一段時間除外,可能與表面積及蒸發速率有關)疏水速率要明顯高于大佛寺4#煤。干燥煤樣吸、疏水曲線表明,胡家河煤樣飽和吸水率4.7%要大于大佛寺煤樣飽和吸水率4.3%;胡家河煤樣開始吸水速率低于大佛寺,之后吸水速率增大,二者幾乎同時達到飽和;疏水曲線與天然含水狀態下煤樣疏水曲線基本一致,整體胡家河煤樣疏水速率明顯高于大佛寺煤樣。
2組樣品的實驗結果均表明,大佛寺4#煤的潤濕性好于胡家河4#煤的潤濕性,但是飽和含水率均低于胡家河4#煤。根據液氮與壓汞實驗測得2個井田煤樣(分鏡煤和暗煤)孔容特征分析(表1,圖3)可知,大佛寺4#煤總孔容略高于胡家河4#煤,但是主要以微孔為主,自然狀態下將煤樣浸入水中,水分難以進入微孔,相較而言,胡家河4#煤小孔和中孔占據比例要遠大于大佛寺4#煤,因而大佛寺4#煤飽和含水率低于胡家河4#煤可以得到合理解釋。
胡家河煤樣,飽和含水率大,疏水速率快,達到飽和狀態的含水率耗時短。這可能與胡家河4#煤含氣量較低直接相關。在地層深處,如果有地下逕流,進入煤層的水處于飽和或超飽和狀態,構造或高差造成排泄口,疏水效果好。水來得快易飽和,疏干較迅速,循環往復,造成煤層氣散失,含氣量低。
2 煤粉末浸透速度法實驗采用毛細作用原理來表征煤粉潤濕性大小是粉沫浸透速度法的根本原理,水溶液在毛細管力作用下通過微孔向煤體內部滲透。毛細現象取決于液體的表面張力、毛細管直徑和固-液間的接觸角,當溶液的表面張力及毛細管直徑一定時,毛細力的大小取決于固—液間的接觸角,對于不同的煤粉,可以通過在相同溶液中、相同時間下已潤濕的煤粉的高度(或長度)來對不同煤粉的潤濕性進行比較,相同時間內,煤粉潤濕的高度(或長度)值越大,說明該煤粉的潤濕性越好,煤易于潤濕。
為減少實驗誤差,2組煤樣各進行3個平行樣測試,將6個樣品(煤樣粒徑小于74 μm)裝入附有刻度的玻璃管并震實、均勻壓緊,管的端部固定上濾紙,玻璃槽內侵透溶液為自來水溶液(圖4)。對于大佛寺、胡家河不同的煤粉,同一時間內,對記錄的3個平行樣數據取平均值,比較煤粉被侵濕的平均高度來判斷相對潤濕性。
分別對大佛寺4#煤和胡家河4#煤連續30 d的數據(表2)進行曲線圖繪制(圖5),比較分析潤濕性特征與規律。
從圖5可以看出,大佛寺和胡家河煤樣潤濕高度隨時間變化曲線整體表現為快速上升,到某一時間點過渡為一平臺,其中大佛寺煤樣在第12 d后潤濕高度趨于穩定,值保持在13~14 cm間,胡家河煤樣大至同樣在第12 d后潤濕高度趨于穩定,值在11~12 cm間。前12天出現潤濕高度快速上升是因為煤樣潤濕開始階段受到表面張力作用,液體自發地滲透進入粉體柱中,之后出現潤濕高度趨于平穩,可能是因為上升到一定高度后,由于水重力作用,致使潤濕速度下降,潤濕高度變化緩慢。通過比較胡家河和大佛寺4#煤粉煤潤濕高度隨時間變化曲線,發現大佛寺煤樣潤濕高度一直處在胡家河之上,說明其潤濕性明顯好于胡家河,煤樣易被液體潤濕。
3 煤—水溶液界面接觸角測定實驗接觸角是煤體潤濕性能最直接的體現,關于接觸角的測定方法文獻[25-29]都曾有過闡述,塊樣和粉末成型樣測定煤的接觸角都各有利弊。為了印證不同類型煤樣接觸角測試的可靠度,實驗同時采用塊樣[31-32]和粉末成型樣進行接觸角測量。
3.1 樣品制備與測定方法
3.1.1 塊樣的制備
從2個煤礦采集來的煤樣中挑選出無明顯裂隙的塊樣,分別切割成3個3 cm×3 cm×2 cm的塊體,用60目、600目、1 200目的砂紙及毛玻璃板打磨出一個光潔的面,用于測定接觸角(圖6)。
3.1.2 粉末成型樣的制備 在塊樣制備后剩余的樣品中選出較為破碎的煤樣,粉碎,經過300網目的篩子篩分,再經瑪瑙研缽研磨,在30 MPa壓力下的加壓成型器內(含硼酸)壓制2分鐘成型(圖7),每組壓制3個平行樣,用于測定接觸角。
3.1.3 溶液的制備
本次實驗測定接觸角的溶液有蒸餾水、脂肪醇聚氧乙烯醚溶液(以下簡稱JFC溶液)、十二烷基苯磺酸鈉溶液(以下簡稱LAS溶液)和烷醇酰胺溶液(以下簡稱6501溶液),將各表面活性劑配成0.3%的水溶液,以供實驗使用[33]。
3.1.4 接觸角測量儀器
采用德國Dataphysics公司研發生產的OCA20視頻光學接觸角測量儀測定。實驗過程中,考慮到液體的蒸發及重力作用影響,每次滴在光面的液滴體積為5 μL,待溶液在煤表面鋪展穩定后(約10 s),采用快速照相法(圖8),測定接觸角。在每個樣不同部位測定3組數據,將多組測定數據(去掉異常值)取平均值得到不同溶液、不同地區、不同類型煤樣的接觸角值。
3.2 實驗結果與分析煤的塊樣和粉末成型樣對不同溶液的接觸角見表3.
接觸角測定結果表明,將未加表面活性劑的蒸餾水滴在煤樣上測定的固—液接觸角,無論是塊樣還是粉末成型樣,對于變質程度基本相同的2個煤礦(表4,表5),胡家河4#煤樣的接觸角均大于大佛寺4#煤樣,說明大佛寺4#煤的潤濕性要好于胡家河4#煤。
通過加入表面活性劑改變蒸餾水的表面張力測定煤樣的固—液接觸角,表明在不同溶液浸濕下,各煤樣的接觸角都出現了不同程度的減小。同一煤礦地區,相同溶液對不同類型的煤樣浸濕,表現有所差異,圖9,圖10顯示,加入表面活性劑改性的水溶液對粉末成型樣固-液間的接觸角影響較大,塊樣與溶液間的界面接觸角隨增強的活性劑加入,接觸角依次減小,但減小幅度有減弱的趨勢,表明活性劑對改變塊狀煤樣潤濕性相比粉末成型樣越來越難。
4 結 論
1)從飽和含水率和孔隙特征角度看,胡家河4#煤達到飽水時,用時短,含水率大,大佛寺4#煤反之。確保有效的壓裂造縫,壓裂大佛寺4#煤儲層時要有足夠的時間保證。
2)從潤濕性角度看,大佛寺4#煤的潤濕性要好于胡家河4#煤,但胡家河4#煤的潤濕性較大佛寺易被改善。相同類型的煤層氣井,在排水降壓過程中,大佛寺煤層氣井的影響半徑變化較慢,這就決定了煤層氣井排水—產氣時間較胡家河更長。
3)煤與水溶液之間的接觸角受溶液中活性劑影響,可見不同類型的表面活性劑可改變煤的疏水速率,因此,在不同地區煤層氣井壓裂過程中,應選擇適合該地區煤儲層潤濕性特征的試劑,以保證排采作業能較快排出壓裂前置液,較短時間內達到正常的排采煤層水、產出氣體。
參考文獻(References):
[1]王博洋,秦 勇,申 建,等.我國低煤階煤煤層氣地質研究綜述[J].煤炭科學技術,2017,45(1): 170-179.WANG Bo-yang,QIN Yong,SHEN Jian,et al.Summarization of geological study on low rank coalbed methane in China[J].Coal Science and Technology,2017,45(1): 170-179.
[2]張 群,崔永君,鐘玲文,等.煤吸附甲烷的溫度-壓力綜合吸附模型[J].煤炭學報,2008,33(11): 1272-1278.ZHANG Qun,CUI Yong-jun,ZHONG Ling-wen,et al.Temperature pressure comprehensive adsorption model for coal adsorption of methane[J].Journal of China Coal Society,2008,33(11): 1272-1278.
[3]唐書恒,湯達禎,楊 起.二元氣體等溫吸附-解吸中氣分的變化規律[J].中國礦業大學學報,2004,33(4):448-453.TANG Shu-heng,TANG Da-zhen,YANG Qi. Variation regularity of gas component concentration in binary-component gas adsorption-desorption isotherm experiments[J].Journal of China University of Mining & Technology,2004,33(4): 448-453.
[4]蘇現波,陳 潤,林曉英,等.吸附勢理論在煤層氣吸附/解吸中的應用[J].地質學報,2008,82(10): 1382-1389.SU Xian-bo,CHEN Run,LIN Xiao-ying.et al.Application of adsorption potential theory in the fractionation of coalbed gas during the process of adsorption/desorption[J].Acta Geologica Sinica,2008,82(10): 1382-1389.
[5]張 凱,湯達禎,陶 樹,等.不同變質程度煤吸附能力影響因素研究[J].煤炭科學技術,2017,45(5): 192-197.
ZHANG Kai,TANG Da-zhen,TAO Shu,et al.Study on influence factors of adsorption capacity of different metamorphic degree coals[J].Coal Science and Technology,2017,45(5):192-197. [6]Busch A,Genst Erblum Y,Kross B M.Methane and CO2 sorption and desorption measurements on dry Argonne premium coals:pure components and mixture[J].International Journal of Coal Geology,2003,55(2-4): 205-224.
[7]張遂安,葉建平,唐書恒,等.煤對甲烷氣體吸附-解吸機理的可逆性實驗研究[J].天然氣工業,2005,25(1): 44-46.
ZHANG Sui-an,YE Jian-ping,TANG Shu-heng,et al.Theoretical analysis of coal-methane adsorption/desorption mechanism and its reversibility experimental study[J].Natural Gas Industry,2005,25(1): 44-46.
[8]馬東民,馬 薇,藺亞兵.煤層氣解吸滯后特征分析[J].煤炭學報,2012,37(11):1885-1889.MA Dong-min,MA Wei,LIN Ya-bing.Desorption hysteresis characteristics of CBM[J].Journal of China Coal Society,2012,37(11):1885-1889.
[9]馬東民,李來新,李小平,等.大佛寺井田4#煤CH4與CO2吸附解吸實驗比較[J].煤炭學報,2014,39(9): 1938-1944.MA Dong-min,LI Lai-xin,LI Xiao-ping,et al.Contrastive experiment of adsorption-desorption between CH4 and CO2 in Coal Seam 4 of DafosiCoalmine[J].Journal of China Coal Society,2014,39(9): 1938-1944.
[10]Orumwense F S.Estimation of the wettability of coal from contact angles using coagulants and flocculants[J].Fuel,1998,77(9-10): 1107-1111.
[11]趙振保,楊 晨,孫春燕,等.煤塵潤濕性的實驗研究[J].煤炭學報,2011,36 (3): 442-446.ZHAO Zhen-bao,YANG Chen,SUN Chun-yan,et al.Experimental study of coal dust wettability[J].Journal of China Coal Society,2011,36 (3): 442-446.
[12]程衛民,薛 嬌,周 剛,等.基于紅外光譜的煤塵潤濕性[J].煤炭學報,2014,39(11): 2256-2262.CHEN Wei-min,XUE Jiao,ZHOU Gang,et al.Study of coal dust wettability based on FTIR[J].Journal of China Coal Society,2014,39 (11): 2256-2262.
[13]Semenova S A,Patrakov Yu F.Dependence of the water wettability of the surfaces of fossil coals on their structure and properties[J].Solid Fuel Chemistry,2017,51 (3): 135-140.
[14]Solodyankin S S,Kolmakov N G,Manin N S,et al.Using a solution of the surfactant for increasing collection efficiency of coal dust in the exhaust system[J].Coke and Chemistry,2016,59 (9): 333-337.
[15]張勁松,武騰飛.綜采工作面煤層注水降塵技術試驗研究[J].煤炭技術,2016,35(10):173-175.ZHANG Jin-song,WU Teng-fei. Study on seam water injection and dust control technology of fully-mechanized caving face[J]. Coal Technology,2016,35(10):173-175.
[16]蔣仲安,王 偉.降低爆破煙塵的降塵劑配方的實驗研究[J].煤炭學報,2011,36(10):1720-1724.JIANG Zhong-an,WANG Wei.Research on optimal formula of dustfall agent to remove blasting smoke[J].Journal of China Coal Society,2011,36(10):1720-1726.
[17]劉向君,熊 健,梁利喜,等.川南地區龍馬溪組頁巖潤濕性分析及影響討論[J].天然氣地球科學,2014,25 (10):1644-1652.LIU Xiang-jun,XIONG Jian,LIANG Li-xi,et al.Analysis of the wettability of Longmaxi Formation shale in the south region of Sichuan Basin and its influence[J].Natural Gas Geoscience,2014,25(10):1644-1652. [18]張 濤,李相方,王永輝,等.頁巖儲層特殊性質對壓裂液返排率和產能的影響[J].天然氣地球科學,2017,28(6):828-838.ZHANG Tao,LI Xiang-fang,WANG Yong-hui,et al.Study on the effect of gas-shale reservoir special properties on the fracturing fluid recovery efficiency and production performance[J].Natural Gas Geoscience,2017,28 (6):828-838.
[19]李春穎,張志全,林 飛,等.壓裂液在頁巖儲層中的滯留與吸收初步探索[J].科技通報,2016,32(8):31-35.LI Chun-ying,ZHANG Zhi-quan,LIN Fei,et al.Initial exploration of fracturing fluid retention in shale reservoirs[J].Bulletin of Science and Technology,2016,32(8):31-35.
[20]王所良,王玉功,李志航.稠化水清潔壓裂液返排液驅油技術[J].油田化學,2016,33(4):623-628.WANG Suo-liang,WANG Yu-gong,LI Zhi-hang.Oil displacement technology based on clean fracturing fluid flow-back water[J].Oilfield Chemistry,2016,33(4):623-628.
[21]王生全,薛 龍,馬荷雯,等.大佛寺煤礦低煤階煤層氣地面開采選區評價[J].西安科技大學學報,2015,35(4):421-425.WANG Sheng-quan,XUE Long,MA He-wen,et al.Evaluation of selected target areas on CBM ground mining for low-rank coal of Dafosi coal mine[J].Journal of Xi’an University of Science and Technology,2015,35(4):421-425.
[22]方世躍,劉 震.胡家河井田原煤含硫特征及主控因素[J].西安科技大學學報,2017,37(3):339-345.FANG Shi-yue,LIU Zhen. Characteristics of sulfur content of raw coal and main controlling factors in Hujiahe mining field[J].Journal of Xi’an University of Science and Technology,2017,37(3):339-345.
[23]譚天譯.工業粉塵理化性質的測定方法[M].北京:化學工業出版社,1988.TAN Tian-yi.Measurement of industrial dust physio-chemical properties[M].Beijing: Chemical Industry Press,1988.
[24]黃維明,唐恩賢,錢竹響,等.煤塵組成與水潤濕性能關系的研究[J].煤炭技術,2017,36(12):159-161.HUANG Wei-ming,TANG En-xian,QIAN Zhu-xiang,et al.Study on influencing factors and numerical simulation of gas emission in goaf of fully-mechanized mining[J]. Coal Technology,2017,36(12):159-161.
[25]楊 靜,譚允禎,顧景梅,等.動態接觸角測定法研究潤濕劑對煤塵的潤濕性能[J].煤礦安全,2008(12): 7-10.YANG Jing,TAN Yun-zhen,GU Jing-mei,et al.Research of wet agent on coal dust wettability by dynamic contact angle measuring method[J].Safety in Coal Mines,2008 (12): 7-10.
[26]徐海宏,李 滿,舒新前,等.煤塵潤濕性能測試技術分析[J].煤炭科學技術,2009,37(10): 47-49.XU Hai-hong,LI Man,SHU Xin-qian,et al.Analysis of coal dust wettability testing techniques[J].Coal Science and Technology,2009,37(10): 47-49.
[27]解興智,傅 貴.煤潤濕性測量方法的探討[J].煤炭科學技術,2004,32(2): 65-68.XIE Xing-zhi,FU Gui.Investigation of coal wetability measuring method[J].Coal Science and Technology,2004,32(2): 65-68.
[28]Arkhipov V A,Paleev D Yu,Patrakov Yu F,et al.Determination of contact angle on the coal surface[J].Journal of Mining Science,2011,47(5): 561-565. [29]秦波濤,周 群,李修磊,等.煤礦井下磁化水與表面活性劑高效協同降塵技術[J].煤炭學報,2017,42(11):2900-2907.QIN Bo-tao,ZHOU Qun,LI Xiu-lei,et al.Synergistic technology between surfactant and magnetized water for efficient dust control in underground coal mines[J].Journal of China Coal Society,2017,42(11):2900-2907.
[30]霍多特 B B.煤與瓦斯突出[M].宋士釗,王佑安,譯.北京:中國工業出版社,1966.ХОДОТ B B.Coal and gas outburst[M].SONG Shi-zhao,WANG You-an,Translation.Beijing: China Industry Press,1966.
[31]劉厚寧.煤潤濕性及其對煤層氣吸附解吸的影響[D].西安: 西安科技大學,2015.LIU Hou-ning.Wettability of coal and its impact on the adsorption desorption of coalbed methane[D].Xi’an: Xi’an University of Science and Technology,2015.
[32]麻紅順,劉厚寧,嚴 康.不同變質程度煤的潤濕性研究[J].煤炭技術,2016,35(8): 119-121.MA Hong-shun,LIU Hou-ning,YAN Kang.Study on different rank of coal wettability[J].Coal Technology,2016,35(8): 119-121.
[33]李 滿.表面活性劑促進煤塵潤濕的作用研究[D].北京: 中國礦業大學(北京),2008.LI Man.Research on surfactant promoting coal dust wettability[D].Beijing: China University of Mining & Technology (Beijing),2008.
轉載注明來源:http://www.hailuomaifang.com/1/view-14863765.htm